Master Plan Goals

1. Support the University Strategic Plan by providing for development of physical resources which accommodate the strategic vision and program directions articulated in the plan.

2. Preserve the core qualities of the campus while nurturing growth.

3. Plan for the long range highest and best use of the University’s significant land assets.

4. Plan transportation and infrastructure systems to anticipate growth rather than react to demand.

5. While the master plan will propose solutions based on current data, it is understood that a plan should be a ‘living’ document and therefore allow for future change within its framework.

6. Celebrate the unique Virginia Tech Campus as PLACE.
EXECUTIVE SUMMARY

MASTER PLAN GOALS
DEFINING STRATEGIES
PROGRAM ACCOMMODATION
CAMPUS SYSTEMS

Strategic Plan
Core Qualities
Land Assets
Transit & Infrastructure
Living Document
Virginia Tech as a Place

CAMPUS MASTER PLAN UPDATE 2006

Master Plan Goals

Planning Drivers

Research: Plan for facilities and support space to increase research capacity to be competitive with Top 30 institutions ($540M annual research expenditures target)

Access: Provide multi-modal campus access strategies. Provide appropriate parking and roadway infrastructure to support growth.

Infrastructure: Physical Plant steam capacity rapidly approaching critical levels. Chilled water rapidly approaching capacity. Storm water issues – Stroubles Creek identified as “Impaired Stream”. Mitigate flooding on campus.

Place Making: Maintaining and enhancing the historic character of the campus “walkable village”, while nurturing growth which embodies the best attributes of the existing campus. This includes the use of stone, traditional architectural elements and extending the existing campus spatial hierarchy.
Strategic Plan: Key Points

Discovery: Increase the stature of Virginia Tech as a research university. The 2012 target is for $540M in annual research expenditures.

Graduate Education: Increase the quality of the graduate programs. Increase graduate enrollment including 2,600 PhD students by 2012.

Undergraduate Education: Strengthen the quality of undergraduate instruction, including an increase in the number of undergraduates involved in research. The 2012 enrollment target is 22,500 undergraduate students including 3,000 who enter as transfer students.

Engagement: Expand professional education, respond to societal needs, create new strategic partnerships with the private sector.
Benchmarking

In order to understand the physical space required to achieve the strategic goals, the master plan team conducted a benchmarking study against ten competitive and aspirant peer institutions. The institutions were evaluated on university academic space normalized to net square feet/student and net square feet/faculty. Additionally, several key performance factors were evaluated. The peer institutions benchmarked were:

- Georgia Institute of Technology - Atlanta
- Michigan State University - East Lansing
- North Carolina State University - Raleigh
- Ohio State University - Columbus
- Pennsylvania State University - University Park
- Purdue University - West Lafayette
- Texas A&M University - College Station
- University of Arizona - Tucson
- University of Illinois at Urbana-Champaign
- University of Michigan - Ann Arbor
- University of Texas - Austin
- University of Wisconsin - Madison

Conclusions from the Benchmarking Study contributed to establishing a basis for the quantification and distribution of the Master Plan Program.
Undergraduate

Goal: Enhance the quality of undergraduate programs, and endeavor to increase in the number of undergraduates involved in research.

Over the 2002-2003 academic year the Provost led a process to “realign” the then 8 colleges, allowing academic departments to reconsider where they would report. Five departments realigned college affiliations. The College of Arts and Sciences was merged with the College of Human Resources to form the College of Liberal Arts and Human Sciences and a new College of Science was formed.

It is anticipated that undergraduate enrollment will see only slight growth over the next 10 years (primarily via transfer students).

Student Support

Enhancement of on-campus student support space continues to be a priority. Union and Dining space, particularly in the academic core area is in great need. Indoor and outdoor recreation areas are currently over utilized.

The 2005 housing facilities study recommended systematic upgrades to the existing housing stock, including air conditioning of the older residence halls. It is recommended that new residence hall space be constructed to provide swing space for renovations, as well as provide a variety of housing options.
Research

Increasing funded research initiatives is a primary goal of the Strategic Plan. Research space totals 839,000 gross square feet with an additional 717,000 identified as teaching laboratories.

2003 research expenditures were reported at $247 M. New research initiatives are planned to bring research expenditures over $540 M by 2012.

The Virginia Tech Board of Visitors adopted a plan in 2005 to grow PhD enrollment by 900 students by 2012.

The developing Life Sciences District will create a new district of campus primarily focused on research initiatives. Additionally, the Corporate Research Center provides short-term lease space for new research programs.

Graduate Studies

Graduate studies will play a key role in enabling the University to reach its research goals. Recruitment and retention of quality graduate students is a core element of a strong graduate studies program. Quality academic and graduate support space is key to student recruitment and retention. In 2006, a new Graduate Life Center opened its doors in a facility previously occupied by the Donaldson Brown Hotel and Conference Center.
Virginia Tech is one of the most spatially coherent campuses in the country today. The master plan endeavors to identify and preserve these spatial qualities.
Central to this coherency is the array of iconic spaces formed by the Alumni Mall, Drill Field, Duck Pond and the Grove which define an armature of formal open space.
Most people think of campuses as a collection of its buildings.
Virginia Tech is also a collection of its quadrangles and positive open spaces.
As well as less positive open spaces, primarily parking lots.
And by addressing the vehicular and pedestrian networks that tie them together.
EXECUTIVE SUMMARY

MASTER PLAN GOALS
DEFINING STRATEGIES
PROGRAM ACCOMMODATION
CAMPUS SYSTEMS

Strategic Plan
Core Qualities
Land Assets
Transit & Infrastructure
Living Document
Virginia Tech as a Place

With relation to origins.
EXECUTIVE SUMMARY

MASTER PLAN GOALS
DEFINING STRATEGIES
PROGRAM ACCOMMODATION
CAMPUS SYSTEMS

Strategic Plan
Core Qualities
Land Assets
Transit & Infrastructure
Living Document
Virginia Tech as a Place

And destinations.
These, along with the Hokie Stone building exteriors and collegiate gothic architecture, exemplify the core qualities of Virginia Tech.
These, along with the Hokie Stone building exteriors and collegiate gothic architecture, exemplify the core qualities of Virginia Tech.

Design Tenets

1. The dominant exterior building material will continue to be the local dolomite limestone (Hokie Stone) set in a random ashlar pattern.

2. New building placement should help define outdoor campus space.

3. Building heights should primarily range from two to four stories, appropriate in scale with the adjacent outdoor spaces.

4. Building design should complement the character of the core campus architecture, integrating simple building massing with simply ordered and well articulated facades.

5. The architectural and landscape guidelines from the 1994 Campus Master Plan Update will continue to be used to provide general guidance in future development of architecture and landscapes.
For the first time in the last several planning cycles, the University is considering the significant use of land beyond the core campus in addition to infilling the core. The Virginia Tech Foundation has acquired over 300 acres, The Heth Farm, as an expansion of the west campus, and may consider limited acquisitions filling in key areas adjacent to the core campus.
The University and the Town of Blacksburg share a drainage basin that flows through Stroubles Creek. Stroubles Creek has been designated an impaired body of water by the State. Future planning needs to embody sustainable land use practices and development patterns to preserve key assets and key drainage ways such as the Duck Pond, Drill Field, and wooded areas like the Grove.
Observed Congestion
Pedestrian/Vehicular Conflict
Problem Intersection
B Level of Service - Good
C Level of Service - Adequate
D Level of Service - Poor
F Level of Service - Failing

Strategic Plan
Core Qualities
Land Assets
Transit & Infrastructure
Living Document
Virginia Tech as a Place

Virginia Tech
EXECUTIVE SUMMARY

MASTER PLAN GOALS
DEFINING STRATEGIES
PROGRAM ACCOMMODATION
CAMPUS SYSTEMS

Strategic Plan
Core Qualities
Land Assets
Transit & Infrastructure
Living Document
Virginia Tech as a Place

CAMPUS MASTER PLAN UPDATE 2006

Transit & Infrastructure

Existing Steam
Existing Sanitary Sewer
Existing Stormwater
Existing Chill Water Loop
Stand-alone Chill Water Systems
Greenspace
Forested Areas

STROUBLES CREEK CLASSIFIED AS IMPAIRED BODY OF WATER
From 1983 Master Plan Update:

This master plan, like most, builds on previous planning. The 1983 master plan document developed infill concepts to enhance and organize the spacial character of the campus. The plan provided for new program space while maximizing the existing utility infrastructure, and increasing building density to desired ranges.
From 1994 Master Plan Update:

The 1994 Master Plan Update continued the infill strategies of the previous plan. The plan also called for future expansion to the west while preserving a central natural landscape along the Stroubles Creek corridor.
The 2006 Master Plan continues patterns of infill to achieve ideal densities in the core district. This plan implements western expansion of the campus by proposing the Life Science District in the ten-year horizon, and preserves the golf course as a future district and land bank. The master plan also codifies and designates the environmental and cultural greenway as a significant reservation of lands, waterways, tree stands, and cultural landmarks for future generations and “best management practices” of sustainable land use. Finally, this plan allows for the growth of the airport, CRC, the core campus, and fulfills objectives of the master plan for Blacksburg and, most importantly, aligns with and helps to implement Virginia Tech’s strategic vision.
EXECUTIVE SUMMARY

MASTER PLAN GOALS
DEFINING STRATEGIES
PROGRAM ACCOMMODATION
CAMPUS SYSTEMS

Strategic Plan
Core Qualities
Land Assets
Transit & Infrastructure
Living Document
Virginia Tech as a Place

CAMPUS MASTER PLAN UPDATE 2006
The campus will be developed as three discreet but interlocked districts. The first is the historic academic core surrounding the Drill Field. The second, which will see significant new development over the 10 year period, is the Life Sciences District extending to Vet Medicine. The third is
the Golf Course District, a future district supporting graduate and professional studies, may be developed in the 10-20 year period and should be seen as a land bank. Each of these districts are designed to facilitate the pedestrian use with 10 to 15 minute walking distances.

Key entrances to the campus are associated with each district including a historic and formal entrance from the east on the Alumni Mall. From the Town of Blacksburg and the region beyond, the South Gate Drive entrance from the Route 460 By Pass provides access to the Life Sciences District, athletic facilities, the Virginia Tech Corporate Research Center, the airport, and the balance of campus. Finally, the Price’s Fork Road entrance from the Route 460 By Pass is to be emphasized as the main first time visitor’s entrance to the campus, including the future Virginia Tech Visitor’s Center, the Inn at Virginia Tech, the Alumni Center, the campus, and the Town of Blacksburg beyond.

The master plan accommodates a shared planning agenda with the Town of Blacksburg in developing a cultural district around the town/gown interface. The plan also accommodates the proposed expansion of the airport and the phased expansion of the Corporate Research Center, requiring the relocation of agriculture operations and the relocation of Tech Center Drive to a new alignment.
The acquisition of the Heth property to the west may accommodate some displaced agriculture operations in the short term, and guarantees long term land assets for future development.

A major strategy to be employed is to embrace sustainable land use planning in the interest of resolving, to the greatest degree possible, flood plain and water quality issues related to Stroubles Creek and the shared Town of Blacksburg/Virginia Tech drainage basin. The plan does this by creating an “environmental and cultural greenway” that protects campus drainage ways, addresses stormwater quality and quantity issues and integrates key forested areas and cultural assets that are at the very heart of Virginia Tech, such as the Drill Field, Duck Pond and Grove. The plan also proposes to daylight the north branch of Stroubles Creek in its passage through parking lots north of the academic core.

In addition, the plan proposes the realignment of Duck Pond Drive to connect to Perry Street thereby integrating the Life Sciences District with the academic core and future Golf Course District. This alignment will facilitate the relocation of Blacksburg Transit’s hub from the Drill Field to a transit center located on Perry Street and to be coordinated with a long term structured parking initiative that will
allow the University to build as many as six parking structures over the next 10-20 years. This roadway realignment will also reduce the amount of vehicular traffic on West Campus Drive, thereby enhancing the pedestrian connection to the Core Campus District and will also reduce the pollutant load to the Duck Pond and Stroubles Creek by establishing a green buffer zone between the road and the pond.
The Primary Program accommodation will occur in two areas; the Life Sciences District, and the northern expansion of the Core Academic Campus. Short-term development will have minimal impact on existing agricultural lands east of the bypass. Any land development should minimize environmental impact and should support the storm water strategies outlined in this document. The Golf Course will serve as a land bank for the short-term development strategies.
Defining Strategies

Long term land use strategies will expand campus development toward the 460 By Pass. Agricultural land use east of 460 will, over time, relocate west of the bypass and to other areas. The Golf Course land will be developed as the third walkable district of the campus. Land development should minimize environmental impact and should support the storm water strategies outlined in this document. The Heth Property will be developed to support the University community in the
In the longer term, the university will explore redevelopment opportunities for key parcels which may include mixed-use and public/private partnership opportunities. For example, the university land west of Old Glade Road and north of Prices Fork Road may present a unique opportunity for redevelopment in the future.
Virginia Tech organized an affiliated corporate research park in the 1980’s. Today the Virginia Tech Corporate Research Center (VTCRC) has 675,000 square feet of space in 19 buildings on 120 acres. Phase I total capacity is approximately 1,000,000 square feet. The VTCRC plays a crucial role not only in its outreach and economic development roles but in providing short-term space for research and academic program needs. Phase II of the CRC is planned for adjacent property north of the current park. Additional adjacent land is earmarked for future phases.
Virginia Tech and the Town of Blacksburg have always enjoyed a symbiotic relationship with a small college town feel. In 2001, the Town of Blacksburg, with the participation of Virginia Tech, prepared a “Master Plan for Downtown.” One of the major tenets of that master plan was to create a Cultural District in downtown adjacent to the campus. This campus master plan endorses that concept and proposes the construction of an arts center to include an art gallery, a large performance venue, and parking.
structure. Components of visual and performing arts academic programs will move to Henderson Hall to which a black box theater will be added. These facilities add to those in Squires, the Old Armory, and Lyric Theater to anchor the Cultural District. The campus master plan also identifies an additional parking garage site at the intersection of College Avenue and Otey Street which may support activities in the proposed cultural district.
Early in the planning process, issues related to stormwater management, flood plains, and water quality prompted an additional sub-study of the drainage shed shared by Blacksburg and Virginia Tech. This study proposes the creation and preservation of an environmental corridor along the Stroubles Creek drainage ways, linking the University’s critical environmental and cultural assets together in a no-build zone, the “Environmental and Cultural Greenway.”
A major implementing strategy of the “Environmental and Cultural Greenway” is the day-lighting of Stroubles Creek and resolution of the flood plain from the Duck Pond to Price’s Fork Road through the parking lots north of the academic core. Day-lighting Stroubles Creek will improve water quality downstream and further define the boundaries of the flood plain, thereby allowing development of new buildings and green spaces in these parking lots in the future. This will provide additional proximate building sites as well as positive open spaces to expand the academic core.
A major implementing strategy of the “Environmental and Cultural Greenway,” is the day-lighting of Stroubles Creek and resolution of the flood plain from the Duck Pond to Price’s Fork Road through the parking lots north of the academic core. Day-lighting Stroubles Creek will improve water quality downstream and further define the boundaries of the flood plain, thereby allowing development of new buildings and green spaces in these parking lots in the future. This will provide additional proximate building sites as well as positive open spaces to expand the academic core.
The Master Plan program is distributed primarily within the northern area of the Academic Core District while completing the development of the Life Sciences District. Additionally, the Master Plan provides a framework for infrastructure and roadway development beyond the 10 year program in the Golf Course District.
EXECUTIVE SUMMARY

MASTER PLAN GOALS
DEFINING STRATEGIES
PROGRAM ACCOMMODATION
CAMPUS SYSTEMS

Location
District Plan
Academic Core District
Life Science District
Campus Perimeter
Existing FAR
Future FAR

Data
- Academic
- Athletic/Recreation
- Residential
- Support
- Existing Buildings
- Future Build Out
- Environmental Greenway

REFER TO ACADEMIC CORE DISTRICT SPREADSHEET TO VIEW PROGRAM ACCOMMODATION DATA

CAMPUS MASTER PLAN UPDATE 2006
FAR stands for Floor Area Ratio, which is a simple ratio comparing total land area to total building area. The defining core qualities of the campus are best expressed by the existing campus in densities ranging from approximately 0.7 to 1.0 FAR. The existing FAR vary greatly throughout the campus indicating additional infill potential in all districts of the campus particularly along the eastern and northern sections of the Academic Core District and throughout the entire Life Sciences District.
FAR stands for Floor Area Ratio, which is a simple ratio comparing total land area to total building floor area. Proposed development brings all districts FAR closer to the desired density of approximately 0.7 to 1.0 FAR.
Master Plan Program

Existing Academic/Research Space Inventory
3,694,861 GSF

New Academic Space

<table>
<thead>
<tr>
<th>Category</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classrooms</td>
<td>132,433</td>
</tr>
<tr>
<td>Research Labs</td>
<td>915,385</td>
</tr>
<tr>
<td>Office & Conference</td>
<td>651,336</td>
</tr>
<tr>
<td>Study</td>
<td>178,045</td>
</tr>
</tbody>
</table>

New Academic/Research Space

1,877,199 GSF

Total Academic/Research Space

5,572,060 GSF

Existing ‘Other’ Space Inventory

3,635,736 GSF

New ‘Other’ Space

<table>
<thead>
<tr>
<th>Category</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Use</td>
<td>62,500</td>
</tr>
<tr>
<td>General Use</td>
<td>158,571</td>
</tr>
<tr>
<td>Support Facilities</td>
<td>369,185</td>
</tr>
<tr>
<td>Health Care</td>
<td>33,750</td>
</tr>
<tr>
<td>Residence Facilities</td>
<td>377,750</td>
</tr>
</tbody>
</table>

New ‘Other’ Space

1,001,756 GSF

Total ‘Other’ Space

4,637,492 GSF

Total New Space (Academic/Research & Other)

2,878,955 GSF

Total Space

10,209,552

Note:
The goal of accommodating over 1.3 M gross square feet of research space is achieved by combining the space in the “Research Labs” category with a percentage of space in the “Office & Conference” and “Study” categories.
<table>
<thead>
<tr>
<th>BLDG</th>
<th>Function</th>
<th>2006-08</th>
<th>2008-10</th>
<th>2010-12</th>
<th>Beyond 6 yr plan</th>
<th>Beyond Program</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Engineering Computational Instruction</td>
<td>61,000</td>
<td>48,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Academic Building</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48,000</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Academic Building</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48,000</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Parking Space 1 - 1,000 cars</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>87,400</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Transit Center/ Northwest Student Union Dining</td>
<td></td>
<td>77,200</td>
<td></td>
<td></td>
<td>77,200</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Engineering Comp. Science I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Engineering Comp. Science II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Academic Building</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53,600</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Parking Space 2 II - 1,200 cars</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9A</td>
<td>Surge Space Building #1</td>
<td>Existing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>ICTAS I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>99,400</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Academic and Student Mixed Use</td>
<td>65,000</td>
<td>76,500</td>
<td></td>
<td></td>
<td>85,500</td>
<td></td>
</tr>
<tr>
<td>11A</td>
<td>Academic Replacement Building</td>
<td>94,000</td>
<td>65,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Academic Replacement Building</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85,500</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Academic Replacement Building</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>54,000</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Academic Replacement Building</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84,000</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>New Architecture Bldg. 1 (BC)</td>
<td>37,000</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15A</td>
<td>New Architecture Building #2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48,000</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Classroom Building</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Academic Student Mixed Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>68,000</td>
<td></td>
</tr>
<tr>
<td>17A</td>
<td>Academic Building</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>68,000</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Lane Hall Renovation / Addition</td>
<td>40,300</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Upper Quad Residence Hall</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td>81,000</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Performing Arts Center</td>
<td></td>
<td>0</td>
<td>90,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20A</td>
<td>Parking Structure - 600 cars</td>
<td></td>
<td></td>
<td>90,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Henderson Hall Addition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8,600</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Newman Library Addition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,000</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Replace center section of Davidson</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>51,000</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Campus Heat Plant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Parking Space - 600 cars</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25A</td>
<td>Regional Chiller Plant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20,000</td>
<td></td>
</tr>
<tr>
<td>26B</td>
<td>Parking Structure - Alternate Building Site</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20,000</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Academic Infill opportunity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60,000</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Academic replacement building</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120,000</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Surge Space Building #2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60,000</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>New Residence Hall #1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>92,300</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Basketball Practice Facility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>46,000</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>New Residence Hall #2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80,000</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Indoor Football Practice Field</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demolition of Randolph - phased</td>
<td></td>
<td>-83,000</td>
<td>-83,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demolition of rear of Holden</td>
<td></td>
<td>-36,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demolition of Femoyer</td>
<td></td>
<td>-36,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demolition of Ctr. Davidson</td>
<td></td>
<td>-36,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEMOLITION TOTAL</td>
<td></td>
<td>-161,000</td>
<td>-119,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DISTRICT TOTALS</td>
<td>684,300</td>
<td>201,600</td>
<td>27,500</td>
<td>274,600</td>
<td>363,000</td>
<td>248,000</td>
</tr>
<tr>
<td>BLDG</td>
<td>Function</td>
<td>2006-08</td>
<td>2008-10</td>
<td>2010-12</td>
<td>Beyond 6 yr plan</td>
<td>Beyond Program</td>
<td>TOTAL</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>-----------------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>1</td>
<td>ICTAS II</td>
<td>77,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sciences Research Lab</td>
<td>93,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Sciences Research II</td>
<td>92,300</td>
<td></td>
<td>51,000</td>
<td></td>
<td>73,500</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Academic Building</td>
<td>39,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Research</td>
<td>39,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Natural Resources Lab</td>
<td>92,300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Research</td>
<td>100,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7A</td>
<td></td>
<td>92,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Research</td>
<td>144,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Parking Garage - 1,200 cars</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Chiller Plant - Phase I</td>
<td>39,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Instrumentation Center</td>
<td>48,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Research</td>
<td>80,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12A</td>
<td>Plant Growth Facility</td>
<td>42,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>New surface lot - 1,200 cars</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Large Animal Teaching Facilit</td>
<td>20,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Vet. Med Hospital Addition</td>
<td>25,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Sciences Research Lab II / Trans</td>
<td>92,300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>HABBI</td>
<td>93,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17A</td>
<td>Research</td>
<td>84,800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Research</td>
<td>172,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Vet. Med. Faculty Offices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Vet Med. Instruction Addition</td>
<td>31,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20A</td>
<td>NIH Research Facility</td>
<td>16,300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Recreation, Counseling, Clinic Space</td>
<td>43,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Parking S struct. @ Cassell lot-1200 cars</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Research</td>
<td>100,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>CMMID Replacement</td>
<td>30,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Addition to Food Sciences</td>
<td>30,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISTRICT TOTALS

<table>
<thead>
<tr>
<th></th>
<th>2006-08</th>
<th>2008-10</th>
<th>2010-12</th>
<th>Beyond 6 yr plan</th>
<th>Beyond Program</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>383,300</td>
<td>243,600</td>
<td>92,300</td>
<td>232,800</td>
<td>598,500</td>
<td>235,000</td>
</tr>
</tbody>
</table>

Note: All quantities are approximate in Gross Square Feet
Program Accommodation

Campus sites

<table>
<thead>
<tr>
<th>BLDG</th>
<th>Function</th>
<th>MP Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>Special Purpose Housing IV</td>
<td>72,000</td>
</tr>
<tr>
<td>61</td>
<td>Architecture Research Facility</td>
<td>7,500</td>
</tr>
<tr>
<td>62</td>
<td>Hazardous Materials Facility</td>
<td>40,000</td>
</tr>
<tr>
<td>63</td>
<td>Oak Lane Commons Bldg</td>
<td>20,000</td>
</tr>
<tr>
<td>64</td>
<td>Visitors and Admissions Center</td>
<td>18,000</td>
</tr>
<tr>
<td>65</td>
<td>Indoor Rec Facility</td>
<td>80,000</td>
</tr>
<tr>
<td>66</td>
<td>Admin. Serv. Bldg./New Police Facil.</td>
<td>55,600</td>
</tr>
<tr>
<td>67</td>
<td>CNS Storage Facility</td>
<td>20,000</td>
</tr>
<tr>
<td></td>
<td>DISTRICT TOTALS</td>
<td>161,100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>313,100</td>
</tr>
</tbody>
</table>

Note: All quantities are approximate in Gross Square Feet

LOCATION

- Academic/Research & Non-Academic Space
- Master Plan Program
- Academic Core District
- Life Sciences District
- Campus Perimeter

DATA

- Dist. 16100
- 4000
- 4000
- 72000
- 0
- 313100

DISTRICT TOTALS

- 161100
- 4000
- 4000
- 72000
- 0
- 313100
The Master Plan proposes transportation and infrastructure systems that will anticipate growth rather than reacting to demand. Current critical conditions include central steam and chilled water capacity and distribution, as well as stormwater quality and quantity issues.
CAMPUS SYSTEMS

<table>
<thead>
<tr>
<th>Circulation</th>
<th>Roadways</th>
<th>Parking</th>
<th>Transit</th>
<th>Pedestrian Circulation</th>
<th>Bike Routes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Existing Major Roads

New Road Segments

Future Roads

Traffic Calming

Intersection Improvements

Proposed roadway systems will provide for future growth as well as mitigate existing traffic issues. Primary 10-year strategies involve the relocation of Duck
Pond Drive from Washington Street to Perry Street to create a system of streets providing a western perimeter route for the campus, while enhancing the pedestrian connections from the Life Sciences District to the Academic Core District. This proposed system of streets will reduce loads on West Campus Drive. Additionally, traffic calming strategies should be implemented to further reduce loads on West Campus Drive. The second primary short-term strategy involves the realignment of Tech Center Drive to Duck Pond Drive in order to allow for the airport runway expansion.

Future long term strategies include a connection from Price’s Fork Road through the future Golf Course District to the proposed realigned Duck Pond Drive. At the south end of campus, a future connection between Tech Center Drive and Main Street should be considered. Regional traffic plans call for a cross county connector that potentially ties to the campus, however this connector should not connect to South Gate Drive but to a point further south at or beyond the boundary of campus with provisions made for airport access from the Route 460 By Pass.
EXECUTIVE SUMMARY

MASTER PLAN GOALS
DEFINING STRATEGIES
PROGRAM ACCOMMODATION
CAMPUS SYSTEMS

Circulation
 Roadways
 Parking
 Transit
 Pedestrian Circulation
 Bike Routes

Infrastructure
Utilities

Academic Core:
 Displaced 1,800 +/-
 Demand 700 +/-
 New Parking 3,400 +/-
 Net Gain 900 +/-

Life Sciences District:
 Displaced 3,200 +/-
 Demand 1,200 +/-
 New Parking 4,800 +/-
 Net Gain 400 +/-

As indicated in the core qualities analysis, parking lots currently account for a

CAMPUS MASTER PLAN UPDATE 2006
significant percentage of university land use. Proposed parking strategies provide for parking consolidation in perimeter areas serving each district. Consolidation of parking will require construction of as many as six parking structures and will facilitate the redevelopment of several surface parking lots as green quadrangles.
With roadway realignments it is recommended that the hub for Blacksburg transit be moved from the Drill Field at Burruss Hall to a transit center on Perry Street north of the academic core and that bus traffic be removed from the Drill Field as part of this initiative. Other minor route reconfigurations will be necessary in association with road realignments.
Great campuses are pedestrian places. Virginia Tech’s Academic Core District is a walkable village defined by the 15 minute class change schedule and the distance a pedestrian can walk in 10-15 minutes.
Building upon the walkable village of the Academic Core District, the networks of pedestrian circulation will be integrated with, and extended throughout each of the new districts. Pedestrian circulation can further be enhanced by providing visual landmarks and framed views...
that help orient pedestrians to their destinations. The master plan proposes these techniques in developing new campus districts.
EXECUTIVE SUMMARY

CAMPUS SYSTEMS

Circulation
- Roadways
- Parking
- Transit
- Pedestrian Circulation
- Bike Routes

Infrastructure

Utilities

Bicycle accommodations will be achieved through the use of parallel bike lanes on streets and roads and off road trails. Bike lanes primarily provide functional movement and while trails provide functional routes, they also are used for exercise and recreation. Establishing an integrated system of bike lanes and paths will encourage greater use of bicycles as a primary mode of transportation.
At an early point in the planning several steam distribution issues were identified which required additional study. A focused sub-study of the master plan was undertaken to analyze and project a course of action relative to the generation and distribution of steam and chilled water. In addition, alternative fuel sources for steam production were studied. The campus central point for steam generation is the co-generation power plant at a far northern point of
The existing distribution systems were not sized to fully accommodate future growth in these directions. The master plan proposes that additional steam capacity be developed in the central power plant, that significant improvements of the steam distribution system within the 10 year period and that a new distribution system across the north campus be added to facilitate 10 year growth. 20-year growth and beyond needs to further extend distribution systems through the Life Sciences District and the future Golf Course District. Eventually new generation capacity will need to be developed in a western campus site. Although alternative fuels did not prove economically viable in the short term, the University should continue to monitor and review its options as it approaches the need to build new steam generation capacity.
Chilled Water capacity is generated in the academic core through a series of regional plants through distribution loops which provide redundancy and capacity for academic buildings. Additionally, micro-plants have been developed for buildings within the residential areas of campus. However, most of the residence life complex is not air-conditioned. Building-specific chilled water capacity has been employed in the Life Sciences District to date. It is critical for the
university to add regional plant generation capacity in the eastern and southern parts of the Academic Core District, and add regional plant capacity in the very near term in the Life Sciences District and, eventually, in the Golf Course District. It is also important to develop a distribution system with loops to provide redundancy throughout the system.
The campus lies in the drainage basin below the Town of Blacksburg and is drained by the various branches of Stroubles Creek. Stroubles Creek has been declared an impaired body of water by the State. Several branches of Stroubles Creek have been buried in pipes. Early in the planning it was recognized that a focused sub-study was needed to understand the issues of stormwater quality and quantity and...
the potential impact of flood plains on the further development of the Virginia Tech campus. This study recommends as its major strategy the creation of a greenway that preserves and restores the drainage ways and connects the major natural assets of the campus in an integrated system. The master plan further defines this system and its integration with historic and cultural assets to create an “Environmental and Cultural Greenway.”
The Stroubles Creek Study and the master plan further propose that the university fully consider and employ a range of structural “Best Management Practices” (BMPs). BMPs include such things as pervious parking lots over storage beds, green roofs, and vegetated swales with the design intent of managing the runoff from impervious surfaces locally.
The Stroubles Creek Study also recommends the protection of the Stroubles Creek drainage ways and their reintegration with the forested areas of campus. The study proposes the reforestation of the significant slopes surrounding the drainage ways and the daylighting of Stroubles Creek through the parking lots north of the academic core. The study further recommends that all new development respond to the physical characteristics of the drainage ways in configuring the future campus, without compromising the typology of the campus open spaces, i.e., quadrangles.
These structural and non-structural best management practices when taken together and when implemented over a period of time will begin to significantly improve downstream impacts on Stroubles Creek from the university development. Best management practices must also be carefully employed with respect to Virginia Tech’s farming operations. The Town of Blacksburg needs to develop and define a comprehensive response to the impact of its existing and further urban development. These strategies when implemented holistically can significantly improve the water quality issues surrounding Stroubles Creek.
On the northern branch of Stroubles Creek, the master plan proposes a demonstration project that, when implemented, will provide multiple benefits to the quality of campus development. The sub-area of the Stroubles Creek drainage basin that surrounds the north branch has the highest percentage of impervious area of any of the branches of Stroubles Creek, and runs through two large parking lots north of the academic core. Several previous master plans have proposed development crossing this branch of Stroubles Creek and its related floodplain but, to date, no development has taken
place in this area. The Stroubles Creek Study and this master plan propose the daylighting of Stroubles Creek through this area of campus as a demonstration of integrated implementation of best management practices. This will provide the creation of significant positive open space, the management and definition of the floodplain, and the realization of additional buildable sites north of Stroubles Creek into the parking lots. This development, when paired with a strategy of structured parking and significant use of transit, will reduce the percentage of impervious area while allowing additional development.